К сожалению, в настоящее время заказы не принимаются!

Заказать решение ТОЭ

Новости

Магнитное поле, индуктивность
Электроемкость Емкость конденсатора
Катушки и трансформаторы со стальными сердечниками
ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА
НЕЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА
КОНТРОЛЬНАЯ РАБОТА № 2 РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ ВТОРОГО ПОРЯДКА Пермь ПГТУ ПНИПУ
Кузнецова Т.А., Кулютникова Е.А., Кухарчук И.Б. РАСЧЕТ ТРЕХФАЗНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ. Контрольные задания и методические указания к самостоятельной работе по курсам «Основы теории цепей», «Общая электротехника», «Теоретические основы электротехники»

Контактные данные

Решение задач ТОЭ

Вконтакте

Решение ТОЭ онлайн

Главная Примеры решения задач ТОЭ Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Основными законами, определяющими расчет электрической цепи, являются законы Кирхгофа.

На основе законов Кирхгофа разработан ряд практических методов расчета электрических цепей постоянного тока, позволяющих сократить вычисления при расчете сложных схем.

Существенно упростить вычисления, а в некоторых случаях и снизить трудоемкость расчета, возможно с помощью эквивалентных преобразований схемы.

Преобразуют параллельные и последовательные соединения элементов, соединение «звезда» в эквивалентный «треугольник» и наоборот. Осуществляют замену источника тока эквивалентным источником ЭДС. Методом эквивалентных преобразований теоретически можно рассчитать любую цепь, и при этом использовать простые вычислительные средства. Или же определить ток в какой-либо одной ветви, без расчета токов других участков цепи.

В данной статье по теоретическим основам электротехники рассмотрены примеры расчета линейных электрических цепей постоянного тока с использованием метода эквивалентных преобразований типовых схем соединения источников и потребителей энергии, приведены расчетные формулы.

Решение задач Расчет электрических цепей постоянного тока методом эквивалентных преобразований


Задача 1. Для цепи (рис. 1), определить эквивалентное сопротивление относительно входных зажимов a−g, если известно: R1 = R2 = 0,5 Ом, R3 = 8 Ом, R4 = R5 = 1 Ом, R6 = 12 Ом, R7 = 15 Ом, R8 = 2 Ом, R9 = 10 Ом, R10= 20 Ом.

Схема цепи к задаче 1

Рис. 1

Решение

Начнем эквивалентные преобразования схемы с ветви наиболее удаленной от источника, т.е. от зажимов a−g:

Задача 1. Расчетная формула


Задача 2. Для цепи (рис. 2, а), определить входное сопротивление если известно: R1 = R2 = R3 = R4= 40 Ом.

Задача 2. Рис. 2Рис. 2

Решение

Исходную схему можно перечертить относительно входных зажимов (рис. 2, б), из чего видно, что все сопротивления включены параллельно. Так как величины сопротивлений равны, то для определения величины эквивалентного сопротивленияможно воспользоваться формулой:

Задача 2. Формула 1где R — величина сопротивления, Ом;

n — количество параллельно соединенных сопротивлений.

Задача 2. Формула 2


Задача 3. Определить эквивалентное сопротивление относительно зажимов a–b, если R1 = R2 = R3 = R4 = R5 = R6 = 10 Ом (рис. 3, а).

Задача 3. Рис. 3

Рис. 3

Решение

Преобразуем соединение «треугольник» f−d−c в эквивалентную «звезду». Определяем величины преобразованных сопротивлений (рис. 3, б):

Задача 3. Формула 1По условию задачи величины всех сопротивлений равны, а значит:

Задача 3. Формула 2На преобразованной схеме получили параллельное соединение ветвей между узлами e–b, тогда эквивалентное сопротивление равно:

Задача 3. Формула 3

И тогда эквивалентное сопротивление исходной схемы представляет последовательное соединение сопротивлений:

Задача 3. Формула 4


Задача 4. В заданной цепи (рис. 4, а) определить методом эквивалентных преобразований входные сопротивления ветвей a−b, c–d и f−b, если известно, что: R1 = 4 Ом, R2 = 8 Ом, R3 =4 Ом, R4 = 8 Ом, R5 = 2 Ом, R6 = 8 Ом, R7 = 6 Ом, R8 =8 Ом.

Решение

Для определения входного сопротивления ветвей исключают из схемы все источники ЭДС. При этом точки c и d, а также b и f соединяются накоротко, т.к. внутренние сопротивления идеальных источников напряжения равны нулю.

Задача 4. Рис. 4

Рис. 4

Ветвь a−b разрывают, и т.к. сопротивление Ra–b = 0, то входное сопротивление ветви равно эквивалентному сопротивлению схемы относительно точек a и b (рис. 4, б):

Задача 4. Формула 1

Аналогично методом эквивалентных преобразований определяются входные сопротивления ветвей Rcd и Rbf. Причем, при вычислении сопротивлений учтено, что соединение накоротко точек a и b исключает ( «закорачивает») из схемы сопротивления R1, R2, R3, R4 в первом случае, и R5, R6, R7, R8 во втором случае.

Задача 4. Формула 2


Задача 5. В цепи (рис. 5) определить методом эквивалентных преобразований токи I1, I2, I3 и составить баланс мощностей, если известно: R1 = 12 Ом, R2 = 20 Ом, R3 = 30 Ом, U = 120 В.

Задача 5. Рис. 5

Рис. 5

Решение

Эквивалентное сопротивлениедля параллельно включенных сопротивлений:

Задача 5. Формула 1

Эквивалентное сопротивление всей цепи:

американские сигареты парламент.

Задача 5. Формула 2

Ток в неразветвленной части схемы:

Задача 5. Формула 3

Напряжение на параллельных сопротивлениях:

Задача 5. Формула 4

Токи в параллельных ветвях:

Задача 5. Формула 5

Баланс мощностей:

Задача 5. Формула 6


Задача 6. В цепи (рис. 6, а), определить методом эквивалентных преобразований показания амперметра, если известно: R1 = 2 Ом, R2 = 20 Ом, R3 = 30 Ом, R4 = 40 Ом, R5 = 10 Ом, R6 = 20 Ом, E = 48 В. Сопротивление амперметра можно считать равным нулю.

Задача 6. Рис. 6

Рис. 6

Решение

Если сопротивления R2, R3, R4, R5 заменить одним эквивалентным сопротивлением RЭ, то исходную схему можно представить в упрощенном виде (рис. 6, б).

Величина эквивалентного сопротивления:

проститутки академическая. теплообменник для зимней палатки.

Задача 6. Формула 1

Преобразовав параллельное соединение сопротивлений RЭ и R6 схемы (рис. 6, б), получим замкнутый контур, для которого по второму закону Кирхгофа можно записать уравнение:

Задача 6. Формула 2

откуда ток I1:

Задача 6. Формула 3

Напряжение на зажимах параллельных ветвей Uab выразим из уравнения по закону Ома для пассивной ветви, полученной преобразованием RЭ и R6:

Задача 6. Формула 4

Тогда амперметр покажет ток:

Задача 6. Формула 5


Задача 7. Определить токи ветвей схемы методом эквивалентных преобразований (рис. 7, а), если R1 = R2 = R3 = R4 = 3 Ом, J = 5 А, R5 = 5 Ом.

Задача 7. Рис. 7

Рис. 7

Решение

Преобразуем «треугольник» сопротивлений R1, R2, R3 в эквивалентную «звезду» R6, R7, R8 (рис. 7, б) и определим величины полученных сопротивлений:

Задача 7. Формула 1

Преобразуем параллельное соединение ветвей между узлами 4 и 5

Задача 7. Формула 2

Ток в контуре, полученном в результате преобразований, считаем равным току источника тока J, и тогда напряжение:

Задача 7. Формула 3

И теперь можно определить токи I4 и I5:

Задача 7. Формула 4

Возвращаясь к исходной схеме, определим напряжение U32 из уравнения по второму закону Кирхгофа:

Задача 7. Формула 5

Тогда ток в ветви с сопротивлением R3 определится:

Задача 7. Формула 6

Величины оставшихся неизвестными токов можно определить из уравнений по первому закону Кирхгофа для узлов 3 и 1:

Задача 7. Формула 7


Электронная версия статьи Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Примеры решения задач Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Расчет электрических цепей постоянного тока методом эквивалентных преобразований


Метод эквивалентных преобразований

Метки