3.1 Расчет цепей синусоидального тока методом векторных диаграмм
Методы и примеры решения задач ТОЭ → РЕШЕНИЕ ЗАДАЧ ТОЭ — МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ → 3 Методы расчета линейных цепей синусоидального тока3.1 Расчет цепей синусоидального тока методом векторных диаграмм
Полезной иллюстрацией расчета любой электрической цепи является ее топографическая диаграмма напряжений и векторная лучевая диаграмма токов или векторная диаграмма токов и векторная диаграмма напряжений на комплексной плоскости, которая позволяет находить графическим путем напряжения между любыми точками электрической цепи без дополнительных вычисленийПримеры решения типовых задач методом векторных диаграмм
Задача 3.1.1 Для схемы рис. 3.1.1 определить токи во всех ветвях и напряжения на всех участках, составить баланс активных и реактивных мощностей, построить полную векторную диаграмму цепи, записать мгновенные значения токов, если U = Umsin(ωt + ψU), Um =600 В, ψU = –90°, R1 = 10 Ом, Х2 = R3 = Х3 = 20 Ом, Х4 = 50 Ом.
Рис. 3.1.1
Решение
1. Заменим разветвленный участок эквивалентной ветвью с параметрами R23 и X23, для чего рассчитаем активные и реактивные проводимости параллельных ветвей
Рис. 3.1.2
2. Эквивалентная схема приведена на рис. 3.1.2, по которой рассчитаем ток неразветвленной части исходной схемы
Удлинение грузовых автомобилей..
где
Таким образом, мгновенное значение тока
Действующее значение тока
3. Напряжение на эквивалентном участке
где
Тогда
4. Действующее значение токов параллельных ветвей и напряжения эквивалентного участка:
5. Углы сдвига фаз напряжений и токов второй и третьей ветвей
6. Мгновенные значения токов параллельных ветвей
где
7. Проверим баланс активных мощностей
8. Проверим баланс реактивных мощностей
Таким образом, баланс активных и реактивных мощностей сходится, т.е. задача решена верно, и можно переходить к построению полной векторной диаграммы.
9. Рассчитаем напряжения на элементах электрической цепи
Векторная диаграмма приведена на рис. 3.1.3.
Рис. 3.1.3
Задача 3.1.2 В схеме рис. 3.1.4 известны показания приборов вольтметра — 100 В, первого амперметра — 3 А, второго амперметра — 2 А, ваттметра — 160 Вт.
Рассчитать параметры схемы X1, X2, R2.
Рис. 3.1.4
Решение
Показание ваттметра определяется выражением активной мощности участка электрической цепи
откуда
Полное сопротивление второй ветви
откуда
Из треугольника сопротивлений второй ветви
Активная составляющая тока
Реактивная составляющая тока
Рис. 3.1.5
На основании векторной диаграммы рис. 3.1.5 определяем ток в емкости
По закону Ома находим емкостное сопротивление
Метки
- алгоритм расчет цепей при несинусоидальных периодических воздействиях
- алгоритм расчета цепей периодического несинусоидального тока
- баланс мощностей
- ВАХ нелинейного элемента
- Векторная диаграмма
- ветви связи
- взаимная индуктивность
- взаимная проводимость
- вольт-амперная характеристика нелинейного элемента
- второй закон Кирхгофа
- второй закон Кирхгофа для магнитных цепей
- входная проводимость
- гармоники напряжения
- гармоники тока
- Генератор напряжения
- генератор тока
- главные контуры
- графический метод расчета нелинейных электрических цепей
- динамическое сопротивление
- дифференциальное сопротивление
- емкость двухпроводной линии
- емкость коаксиального кабеля
- емкость конденсатора
- емкость однопроводной линии
- емкость плоского конденсатора
- емкость цилиндрического конденсатора
- закон Ампера
- закон Био Савара Лапласа
- закон Ома
- закон полного тока
- закон электромагнитной индукции
- Законы Кирхгофа
- индуктивность
- индуктивность двухпроводной линии
- индуктивность однопроводной линии
- индуктивность соленоида
- катушка со сталью
- Конденсатор в цепи постоянного тока
- контурные токи
- коэффициент амплитуды
- коэффициент гармоник
- коэффициент искажения
- коэффициент магнитной связи
- коэффициент мощности трансформатора
- коэффициент трансформации
- коэффициент формы
- кусочно-линейная аппроксимация
- магнитная постоянная
- магнитная цепь
- магнитный поток рассеяния
- метод активного двухполюсника
- метод двух узлов
- метод контурных токов
- метод наложения
- метод узловых напряжений
- метод узловых потенциалов
- метод эквивалентного генератора
- метод эквивалентного источника ЭДС
- Метод эквивалентных преобразований
- методы расчета магнитных цепей
- независимые контуры
- нелинейный элемент
- несинусоидальный периодический ток
- обобщенный закон Ома
- опорный узел
- основной магнитный поток
- параллельное соединение конденсаторов
- первый закон Кирхгофа
- первый закон Кирхгофа для магнитных цепей
- последовательное соединение конденсаторов
- последовательный колебательный контур
- постоянная составляющая тока
- потери в меди
- потери в стали
- приведенный трансформатор
- Примеры расчета схем при несинусоидальных периодических воздействиях
- принцип взаимности
- принцип компенсации
- расчет гармоник тока
- расчет магнитной цепи
- расчет нелинейных цепей постоянного тока
- расчет цепей несинусоидального тока
- Расчет цепи конденсаторов
- расчет цепи с несинусоидальными периодическими источниками
- Резонанс в электрической цепи
- решение задач магнитные цепи
- сила Ампера
- сила Лоренца
- Символический метод
- собственная проводимость
- статическое сопротивление
- сферический конденсатор
- теорема об эквивалентном источнике
- теорема Тевенена
- топографическая диаграмма
- Трансформаторы
- трехфазная система
- удельная энергия магнитного поля
- уравнения трансформатора
- Цепи с конденсаторами
- частичные токи
- чередование фаз
- ЭДС самоиндукции
- эквивалентная схема трансформатора
- электрическая постоянная
- электроемкость
- энергия магнитного поля