1.2 Метод наложения
Методы и примеры решения задач ТОЭ → РЕШЕНИЕ ЗАДАЧ ТОЭ — МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ → 1 Методы расчета электрических цепей при постоянных токах и напряжениях1.2 Метод наложения
Метод наложения основан на свойстве линейности электрических цепей. Метод наложения справедлив только для линейных цепей. Метод наложения применяется для определения токов в ветвях схемы с несколькими источниками.
Алгоритм метода наложения:
1) выбирают положительные направления токов в ветвях цепи;
2) находят частичные токи в ветвях, вызванные каждым источником по отдельности (схему рассчитывают столько раз, сколько источников действует в схеме);
3) токи в ветвях по методу наложения находят как алгебраическую сумму частичных токов (знак частичного тока при суммировании определяется по положительному направлению тока ветви).
Решение задач методом наложения
Задача 1.2.1. В электрической цепи рис. 1.2.1 с тремя источниками энергии определить все токи в ветвях, воспользовавшись методом наложения.
Рис. 1.2.1
Решение
1. Выполним расчет цепи при воздействии источника ЭДС E1, полагая E3 = 0, J = 0. Источники считаем идеальными, поэтому внутренние сопротивления ЭДС равны нулю, а источника тока — бесконечности. С учетом этого изобразим расчетную схему (рис. 1.2.2).
Рис. 1.2.2
Увлекательные встречи с красивыми и умными девушками доступны на сайте https://volgodonsksm.com для всех желающих.
Определение токов в полученной схеме будем вести, пользуясь методом эквивалентных преобразований:
2. Расчет электрической цепи при воздействии ЭДС источника Е3 выполним, полагая Е1 = 0, J = 0 (рис. 1.2.3).
Рис. 1.2.3
В соответствии с рис. 1.2.3 имеем:
3. Расчет электрической цепи при действии источника тока выполним, полагая E1 = 0, Е2 = 0 (рис. 12.4).
Рис. 1.2.4
В соответствии с рис. 1.2.4 имеем:
Находим токи в параллельных ветвях:
Ток рассчитываем по первому закону Кирхгофа:
4. В соответствии с принятыми направлениями токов в исходной схеме определим их значения по методу наложения как алгебраическую сумму частичных токов всех промежуточных расчетных схем:
Правильность решения задачи проверяем по первому закону Кирхгофа:
Токи I1 и I2 получились отрицательными, т.е. их истинное направление в схеме противоположно принятому положительному направлению.
Метод наложения в статье ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА. Основные положения и соотношения. Упражнения и задачи
метод наложения, частичные токи
Метки
- алгоритм расчет цепей при несинусоидальных периодических воздействиях
- алгоритм расчета цепей периодического несинусоидального тока
- баланс мощностей
- ВАХ нелинейного элемента
- Векторная диаграмма
- ветви связи
- взаимная индуктивность
- взаимная проводимость
- вольт-амперная характеристика нелинейного элемента
- второй закон Кирхгофа
- второй закон Кирхгофа для магнитных цепей
- входная проводимость
- гармоники напряжения
- гармоники тока
- Генератор напряжения
- генератор тока
- главные контуры
- графический метод расчета нелинейных электрических цепей
- динамическое сопротивление
- дифференциальное сопротивление
- емкость двухпроводной линии
- емкость коаксиального кабеля
- емкость конденсатора
- емкость однопроводной линии
- емкость плоского конденсатора
- емкость цилиндрического конденсатора
- закон Ампера
- закон Био Савара Лапласа
- закон Ома
- закон полного тока
- закон электромагнитной индукции
- Законы Кирхгофа
- индуктивность
- индуктивность двухпроводной линии
- индуктивность однопроводной линии
- индуктивность соленоида
- катушка со сталью
- Конденсатор в цепи постоянного тока
- контурные токи
- коэффициент амплитуды
- коэффициент гармоник
- коэффициент искажения
- коэффициент магнитной связи
- коэффициент мощности трансформатора
- коэффициент трансформации
- коэффициент формы
- кусочно-линейная аппроксимация
- магнитная постоянная
- магнитная цепь
- магнитный поток рассеяния
- метод активного двухполюсника
- метод двух узлов
- метод контурных токов
- метод наложения
- метод узловых напряжений
- метод узловых потенциалов
- метод эквивалентного генератора
- метод эквивалентного источника ЭДС
- Метод эквивалентных преобразований
- методы расчета магнитных цепей
- независимые контуры
- нелинейный элемент
- несинусоидальный периодический ток
- обобщенный закон Ома
- опорный узел
- основной магнитный поток
- параллельное соединение конденсаторов
- первый закон Кирхгофа
- первый закон Кирхгофа для магнитных цепей
- последовательное соединение конденсаторов
- последовательный колебательный контур
- постоянная составляющая тока
- потери в меди
- потери в стали
- приведенный трансформатор
- Примеры расчета схем при несинусоидальных периодических воздействиях
- принцип взаимности
- принцип компенсации
- расчет гармоник тока
- расчет магнитной цепи
- расчет нелинейных цепей постоянного тока
- расчет цепей несинусоидального тока
- Расчет цепи конденсаторов
- расчет цепи с несинусоидальными периодическими источниками
- Резонанс в электрической цепи
- решение задач магнитные цепи
- сила Ампера
- сила Лоренца
- Символический метод
- собственная проводимость
- статическое сопротивление
- сферический конденсатор
- теорема об эквивалентном источнике
- теорема Тевенена
- топографическая диаграмма
- Трансформаторы
- трехфазная система
- удельная энергия магнитного поля
- уравнения трансформатора
- Цепи с конденсаторами
- частичные токи
- чередование фаз
- ЭДС самоиндукции
- эквивалентная схема трансформатора
- электрическая постоянная
- электроемкость
- энергия магнитного поля
Как это в узнали R ′ Э = R 5 + R 2 ⋅ (R 3 + R 4) R 2 + (R 3 + R 4) и это I ′ 2 = I ′ 1 ⋅ R 3 + R 4 R 2 + (R 3 + R 4) ?оъясните
Это эквивалентное сопротивление цепи относительно зажимов ЭДС Е1. Нашли методом свертки последовательно или параллельно включенных резисторов.