1.5 Метод эквивалентного генератора (метод эквивалентного источника ЭДС)
Методы и примеры решения задач ТОЭ → РЕШЕНИЕ ЗАДАЧ ТОЭ — МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ → 1 Методы расчета электрических цепей при постоянных токах и напряжениях1.5 Метод эквивалентного генератора (метод эквивалентного источника ЭДС)
Метод эквивалентного генератора основан на теореме об эквивалентном источнике (теорема Тевенена) — активном двухполюснике.
Теорема Тевенена для линейных электрических цепей утверждает, что любая электрическая цепь, имеющая два вывода и состоящая из комбинации источников напряжения, источников тока и резисторов (сопротивлений), с электрической точки зрения эквивалентна цепи с одним источником напряжения E и одним резистором R, соединенными последовательно.
В методе эквивалентного генератора (метод эквивалентного источника ЭДС) сложную разветвленную схему рассматривают как активный двухполюсник по отношению к ветви R с искомым током I, который определяют по выражению
I = EЭГ/ (RЭГ + R),
где
EЭГ = Uхх — ЭДС эквивалентного генератора равная напряжению холостого хода между зажимами подключенного пассивного элемента R в ветви с искомым током;
RЭГ = Rвх — сопротивление эквивалентного генератора равное входному сопротивлению пассивного двухполюсника относительно разомкнутых зажимов.
Алгоритм метода эквивалентного генератора (метод эквивалентного источника ЭДС)
1. Определяют напряжение холостого хода Uхх. Для этого ветвь с искомым током разрывают, удаляя сопротивление, и оставляют ЭДС в этой ветви, если она имеется.
2. Задаются направлением токов в ветвях оставшейся схемы после размыкания ветви. Записывают выражение для напряжения Uхх между разомкнутыми зажимами по второму закону Кирхгофа. В это уравнение войдет ЭДС разомкнутой ветви.
3. Рациональным методом рассчитываются токи в схеме, вошедшие в выражение напряжения Uхх.
4. Определяют входное сопротивление двухполюсника относительно разомкнутых зажимов.
5. В соответствии с методом эквивалентного генератора (метод эквивалентного источника ЭДС), определяют искомый ток ветви.
Решение задач методом эквивалентного генератора (методом эквивалентного источника ЭДС)
Задача 1.5.1 В схеме рис. 1.5.1 амперметр показывает 0,5 А. Определить его показания в схеме рис. 1.5.2.
Решение. Можно считать, что в схеме рис. 1.5.2 резистор R5 подключен к зажимам эквивалентного генератора, который в схеме рис. 1.5.1 работает в режиме короткого замыкания.
Рис. 1.5.3
Определим внутреннее сопротивление эквивалентного генератора по схеме рис. 1.5.3, где заменим треугольник сопротивлений R1R3R0 эквивалентным соединением звездой
ЭДС эквивалентного генератора определим из формулы I = EЭГ/ (RЭГ + R) метода эквивалентного генератора. При коротком замыкании I = EЭГ/RЭГ. Откуда ЭДС эквивалентного генератора
Ток I5 в схеме рис. 1.5.2 по методу эквивалентного генератора (методу эквивалентного источника ЭДС)
Метод эквивалентного источника напряжения, метод эквивалентного источника тока, метод активного двухполюсника в статье ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА. Основные положения и соотношения. Упражнения и задачи
теорема Тевенена, теорема об эквивалентном источнике, метод эквивалентного источника ЭДС, метод эквивалентного генератора
Метки
- алгоритм расчет цепей при несинусоидальных периодических воздействиях
- алгоритм расчета цепей периодического несинусоидального тока
- баланс мощностей
- ВАХ нелинейного элемента
- Векторная диаграмма
- ветви связи
- взаимная индуктивность
- взаимная проводимость
- вольт-амперная характеристика нелинейного элемента
- второй закон Кирхгофа
- второй закон Кирхгофа для магнитных цепей
- входная проводимость
- гармоники напряжения
- гармоники тока
- Генератор напряжения
- генератор тока
- главные контуры
- графический метод расчета нелинейных электрических цепей
- динамическое сопротивление
- дифференциальное сопротивление
- емкость двухпроводной линии
- емкость коаксиального кабеля
- емкость конденсатора
- емкость однопроводной линии
- емкость плоского конденсатора
- емкость цилиндрического конденсатора
- закон Ампера
- закон Био Савара Лапласа
- закон Ома
- закон полного тока
- закон электромагнитной индукции
- Законы Кирхгофа
- индуктивность
- индуктивность двухпроводной линии
- индуктивность однопроводной линии
- индуктивность соленоида
- катушка со сталью
- Конденсатор в цепи постоянного тока
- контурные токи
- коэффициент амплитуды
- коэффициент гармоник
- коэффициент искажения
- коэффициент магнитной связи
- коэффициент мощности трансформатора
- коэффициент трансформации
- коэффициент формы
- кусочно-линейная аппроксимация
- магнитная постоянная
- магнитная цепь
- магнитный поток рассеяния
- метод активного двухполюсника
- метод двух узлов
- метод контурных токов
- метод наложения
- метод узловых напряжений
- метод узловых потенциалов
- метод эквивалентного генератора
- метод эквивалентного источника ЭДС
- Метод эквивалентных преобразований
- методы расчета магнитных цепей
- независимые контуры
- нелинейный элемент
- несинусоидальный периодический ток
- обобщенный закон Ома
- опорный узел
- основной магнитный поток
- параллельное соединение конденсаторов
- первый закон Кирхгофа
- первый закон Кирхгофа для магнитных цепей
- последовательное соединение конденсаторов
- последовательный колебательный контур
- постоянная составляющая тока
- потери в меди
- потери в стали
- приведенный трансформатор
- Примеры расчета схем при несинусоидальных периодических воздействиях
- принцип взаимности
- принцип компенсации
- расчет гармоник тока
- расчет магнитной цепи
- расчет нелинейных цепей постоянного тока
- расчет цепей несинусоидального тока
- Расчет цепи конденсаторов
- расчет цепи с несинусоидальными периодическими источниками
- Резонанс в электрической цепи
- решение задач магнитные цепи
- сила Ампера
- сила Лоренца
- Символический метод
- собственная проводимость
- статическое сопротивление
- сферический конденсатор
- теорема об эквивалентном источнике
- теорема Тевенена
- топографическая диаграмма
- Трансформаторы
- трехфазная система
- удельная энергия магнитного поля
- уравнения трансформатора
- Цепи с конденсаторами
- частичные токи
- чередование фаз
- ЭДС самоиндукции
- эквивалентная схема трансформатора
- электрическая постоянная
- электроемкость
- энергия магнитного поля